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Abstract
Antimicrobial resistance (AMR) in microorganisms is an ongoing threat to human health across the globe. To better
characterize the AMR profiles of six strains of Staphylococcus aureus, we performed a secondary analysis that consisted of the
following steps: 1) download fastq files from the Sequence Read Archive, 2) perform a de novo genome assembly from the
sequencing reads, 3) annotate the assembled contigs, 4) predict the presence of antimicrobial resistance genes. We predicted
the presence of 75 unique genes that conferred resistance against 22 unique antimicrobial compounds.

Figure 1. AMR gene and resistance profile:

Summarized information for antimicrobial resistance in Staphylococcus aureus, including A) the number unique AMR genes
for each of the six strains and B) the number of unique substances against which each strain is resistant.

Description
Antimicrobial resistance is an ongoing threat to global human health1–3, with increasing prevalence in clinical settings4–8.
Bacteria can gain resistance to a given antibiotic by several known mechanisms including efflux pumps, antibiotic
modification/inactivation, modifying the drug target, or bypassing the targeted pathway9–11. Methicillin-resistant
Staphylococcus aureus (MRSA), which comprises many nosocomial infections, are being identified and reported more
frequently12–14. As such, the aim of this work was to apply existing tools to better characterize the diversity of antimicrobial
resistance genes among six strains of Staphylococcus aureus.

We began by downloading the publicly available fastq sequencing files for six S. Aureus genomes from the Sequence Read
Archive (SRA) at NCBI prior to performing a de novo assembly of each genome. We then wanted to predict which
antimicrobial resistance (AMR) genes were present in the assembled contigs from our selected genomes. We observed vast
differences in the number of AMR genes, and the number of substances to which the bacteria were resistant (Extended Data).

We next examined the diversity of AMR genes in the assembled contigs from these isolates. We calculated the mean number
of resistance genes in these isolates to be 31.3 (standard deviation 10.05), and a median number of 28.5. Interestingly, we
found that all six strains contained signatures for eight AMR genes including tet(38), hld, aur, icaC, hlgB, hlgC, hlgA, and
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mepA. In this case, we detected genetic signatures for 49 AMR genes in the YUSA145 genome, the highest of the dataset; and
a minimum of 19 resistance genes in the HG003 Δ0846 strain.

We then reviewed the number of unique substances that these isolates were predicted to have resistance against. The mean
number of unique substances to which these isolates were resistant was 10 (standard deviation 4.52), and a median number of
10.5. As expected, we observed that all six strains were predicted to be resistant to tetracycline; while five of the strains were
resistant to beta-lactams and four were resistant to methicillin. We found that the YUSA145 isolate had predicted resistance to
16 unique substances, the highest number in the analysis. This supports prior work that shows the YUSA145 isolate to have
strong antimicrobial resistance, including methicillin15. In contrast, the HG003 Δ0846 strain had resistance to only 4 unique
substances.

Methods

All of the bioinformatics software and tools were installed within modular Conda environments on a Linux cluster16, an
approach that minimized software version incompatibility.

Data Acquisition and Quality Control Analysis

Six sets of Illumina paired-end fastq DNA sequencing files of Staphylococcus aureus genomes were programmatically
retrieved from the Sequence Read Archive (SRA) database, hosted at the National Center for Biotechnology Information
(NCBI)17. This was done using the prefetch and fasterq-dump functions in the sratools software package (version 3.0.10 on
Linux) with default parameters. The paired-end Illumina read files were trimmed using TrimGalore! (version 0.6.6 with
Cutadapt version 1.18 on Linux) using default parameters other than a Phred score cutoff of 20 and ASCII+33 quality
encoding. A panel of quality control metrics were then calculated from the raw reads using FastQC (version 0.11.9 on Linux)
using default parameters. Once the quality control analyses for the raw reads were completed and evaluated, a de novo
assembly was constructed for each set of paired-end reads using SPAdes (version 3.15.5 with Python 3.12.1 on Linux) using
default parameters and the --isolate flag18. The assembled contigs for each isolate are publicly available
(https://doi.org/10.17605/OSF.IO/7D3FH), with the metadata also available on the project page and as extended data for this
study.

Antimicrobial Resistance Gene Detection

The AMRFinder tool was used to identify regions in the assembled contigs that contained known antimicrobial resistance
(AMR) genes19,20. This program was run with the following parameters: --plus, -O Staphylococcus_aureus to include genes
that have been detected specifically within this bacterial taxon.

Reagents

SRA ID Isolate Name Host of Isolation

SRR21285297 M181_2017 Homo sapiens

SRR21098652 MPAUH2113 Homo sapiens

SRR3194952 CVM N29141PS Turkey

SRR13267216 ST398 Pig

SRR21847659 YUSA145 Homo sapiens

SRR21474707 HG003 (Δ0846 suppressor) Homo sapiens
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Description: Tabular output generated by the AMR algorithm.. Resource Type: Dataset. File: Extended_Data.xlsx. DOI:
10.22002/my5jc-2zj26

Description: FAIR-compliant Metadata for Assemblies of Six S. aureus genomes.. Resource Type: Text. File:
AssemblyMetadata.txt. DOI: 10.22002/f3csp-ahq16
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