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Abstract
In C. elegans, dhc-1(or283); mel-28(t1684) double mutants have a severely reduced brood size compared with each single
mutant and compared to the wild type. To determine if this synthetic low-fecundity phenotype is due to reduced potential to
produce gametes, we studied gonad length and distal gonad mitotic activity in dhc-1(or283) mutants, mel-28(t1684) mutants,
wild-type animals, and dhc-1(or283); mel-28(t1684) double mutants. Gonad length in dhc-1; mel-28 double mutants was the
same as the wild type. Using an antibody against phosphorylated histone H3 (PH3), we tracked mitotic activity in mutant and
wild-type gonads. We found no significant difference in mitotic activity between the double mutant and the wild-type. These
observations suggest that the reduced brood size in dhc-1; mel-28 double mutants is not caused by a mitotically-inactive gonad
and instead has a different and yet-to-be-determined basis.
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Figure 1. dhc-1; mel-28 double mutant gonads resemble the wild type with regard to length and mitotic activity:

(A) Gonads from live wild-type animals, mel-28 mutants, dhc-1 mutants, and dhc-1; mel-28 double mutants. Red marks the
chromatin and green marks the cell membranes. Z-stacks were captured and then collapsed using the Keyence microscope
Analyzer software. The dotted lines indicate how we measured the length of the gonads. Scale bar = 50 μM

(B) Fixed distal gonads from wild-type animals, mel-28 mutants, dhc-1 mutants, and dhc-1; mel-28 double mutants. The blue
represents DAPI staining, the red indicates nuclear pores, and the green indicates mitotic nuclei. Z stacks were captured and
collapsed, and images were processed using haze-reduction software from the Keyence Analyzer package. Scale bar = 50 μM.

(C) Gonad arm length measurements. At least 20 gonads of each strain were measured. Pairwise t tests between strains yielded
p values > 0.05, except for the comparison between mel-28 mutant gonads and dhc-1 mutant gonads, which returned a p value
of 0.014.

(D) PH3-positive nuclei counts. At least 60 gonads of each genotype were analyzed for mitotic activity. Pairwise t tests
between the strains yielded p values > 0.05, except for the comparison between dhc-1 mutants and the wild-type which
showed a p value of 0.048.
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The simultaneous disruption of dynein components and the nucleoporin MEL-28 causes fertility defects in C. elegans
(Fernandez, et al., 2014, Gandhi et al., 2021). When both genes are disrupted at 26 °C, the average hermaphrodite brood size is
about thirty embryos whereas each single mutant usually produces close to one hundred embryos (Fernandez et al, 2014). This
suggests that dynein and MEL-28 act in parallel to promote fertility. Dynein is a multi-component motor required for minus-
end-directed intracellular trafficking in animals (Pfister et al., 2006, Canty et al., 2021) MEL-28 is a conserved nucleoporin
associated with the Y subcomplex of the nuclear pore, and has roles in both the post-mitotic rebuilding of the nuclear pore and
in chromatin state (Galy et al. 2006, Fernandez and Piano 2006, Doucet et al., 2011).

The C. elegans gonad consists a two-armed tube. The distal tip cell caps each gonad arm and acts via Notch signaling to
maintain a mitotically dividing stem cell niche (Austin and Kimble, 1987) As nuclei move toward the proximal end of the
gonad, they commit to gamete fate by discontinuing mitosis and entering prophase I of meiosis. Disruption of gonad mitotic
activity, for example via reduction of Notch signaling (Austin and Kimble, 1987; Yochem and Greenwald, 1989) reduces cell
division in the distal gonad and limits the number of gametes produced. We decided to test whether the reduced fecundity we
observe in dhc-1; mel-28 double mutants was coincident with reduced mitotic potential in the germ line.

To better visualize the gonad in live animals, we first generated mutant strains expressing mCherry::HIS-58 and
GFP::PH(PLC1delta1), each from the germ-line-specific pie-1 promoter (Essex et al., 2009). We then measured gonad arm
length in wild-type, dhc-1 single mutant, mel-28 single mutant, and dhc-1; mel-28 double mutant hermaphrodite adults (Figure
1A and 1C). The gonad arm length was not significantly different between the wild-type and any of the mutant strains we
examined. We did observe that mel-28 single mutant gonad arms were slightly longer than dhc-1 single mutant gonad arms (p=
0.014). Next we studied mitotic events in the stem cell niche of each mutant. Phosphorylated histone H3 (PH3) decorates the
chromatin of M-phase nuclei (Hendzel et al, 1997). To determine if there were differences in mitotic activity amongst the
strains, we counted the number of PH3-positive nuclei in the distal gonad of each mutant strain (Figure 1B). We found that
dhc-1; mel-28 double mutants did not have a reduced number of mitotic nuclei compared to the wild-type (Figure 1D),
suggesting that mitotic potential is unaffected in these mutants. We did observe a slight reduction in the average number of M-
phase nuclei in dhc-1 single mutants compared to the wild type (p= 0.048). Based on these results, we can definitively rule out
the idea that insufficient production of germ cells causes the low fecundity we observe in dhc-1; mel-28 double mutants.

Methods
Gonad measurements:

The dhc-1 (or283) mutant allele we used is temperature sensitive, which allows animals to thrive at 16 °C and causes
embryonic lethality at 26 °C (Hamill et al., 2002). All animals were maintained at 16 °C. L4 hermaphrodites were placed to 26
°C for 24 hours before imaging. Adults were put in 2 mM levamisole and then on 2% agar pads on a glass slide. These were
imaged at 40X using a Keyence BZ-X800 microscope. We used the Keyence Analyzer software (version 1.1.0.23) to measure
each gonad by drawing a line from the -1 oocyte to the distal tip of the gonad.

Immunolocalizations:

L4 hermaphrodites were placed to 26 °C for 24 hours before imaging. Adults were dissected on a polylysine-coated slide in
egg buffer (25 mM HEPES pH 7.4, 118 mM NaCl, 48 mM KCl, 2 mM CaCl2, 2 mM MgCl2) with 2 mM levamisole. A
coverslip was placed over the dissected animals and then the slide was immediately immersed in liquid nitrogen. After
abruptly removing the coverslip from the frozen slide, slides were placed in methanol at -20 °C for ten minutes, followed by
acetone at -20 °C for five minutes, followed by an ice-cold acetone hydration series. After a PBS wash, slides were incubated
with primary antibodies (1:200 Rabbit anti-phosphorylated histone H3 and 1:400 mAb414 to identify the nuclear peripheries)
in a humid chamber at room temperature overnight. Slides were washed three times in PBST and incubated with secondary
antibodies (1:400) in PBS in a humid chamber for one hour. Slides were washed three times in PBST and mounted using
Vectashield Plus Antifade Mounting medium with DAPI and sealed with nail polish. Imaging was done at 60X using a
Keyence BZ-X800 microscope. We captured Z stacks in each channel and manually counted the number of PH3-positive
nuclei in each stack. All images were processed using Adobe Photoshop (24.12.1 release).

Reagents
C. elegans strains

Strain
name Strain genotype availability
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OD95 unc-119(ed3) III; ltIs37 [pie-1p::mCherry::his-58 + unc-119(+)] IV. ltIs38 [pie-
1p::GFP::PH(PLC1delta1) + unc-119(+)]. CGC

AGF110 dhc-1(or283) I; mel-28(t1684)/qC1 III; ltIs37 [(pAA64) pie-1p::mCherry::his-58 + unc-119(+)] IV.
ltIs38 [pie-1p::GFP::PH(PLC1delta1) + unc-119(+)].

Upon
request

AGF135 mel-28(t1684)/qC1 III; ltIs37 [(pAA64) pie-1p::mCherry::his-58 + unc-119(+)] IV. ltIs38 [pie-
1p::GFP::PH(PLC1delta1) + unc-119(+)].

Upon
request

AGF140 dhc-1(or283) I; mel-28(t1684)/qC1 III; ltIs37 [(pAA64) pie-1p::mCherry::his-58 + unc-119(+)] IV.
ltIs38 [pie-1p::GFP::PH(PLC1delta1) + unc-119(+)].

Upon
request

N2 wild type CGC

AGF001 mel-28(t1684)/qC1 III Upon
request

AGF035 dhc-1(or283) I; mel-28(t1684)/qC1 III Upon
request

EU1385 dhc-1(or283) I CGC

Antibodies

Antibody Source

mAb414 (to detect FG-repeat nuclear pores) AbCam ab24609

Anti-Phosphorylated Histone H3 (S10) AbCam ab5176

Goat anti-mouse TRITC Jackson 115-025-003

Goat anti-rabbit FITC Jackson 111-095-003

Acknowledgements: Some strains were provided by the CGC, which is funded by NIH Office of Research Infrastructure
Programs (P40 OD010440).
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