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Abstract
The promoter of the Arabidopsis MYB93 (MYB93) transcription factor was previously identified in a large-scale screen
using the SCARECROW (SCR) transcription factor. Independent high-throughput studies also identified MYB93 as a
protein-interaction partner of the MAP kinase 3 (MPK3). Here, we validate and extend those observations using RT-PCR,
yeast two-hybrid assays and phenotypic analysis. MYB93 transcript levels were elevated in the scr-3 mutant and reduced
upon expression of SCR-GFP, indicating regulation by SCR. In yeast, the N-terminal domain of MYB93, but not the C-
terminal region, interacted with MPK3. We also observed that mpk3-1 mutants exhibited a lateral root phenotype similar
to myb93-1. Together, these findings support a model in which both MYB93 gene expression and MYB93 protein function
are modulated by SCR and MPK3, respectively.

Figure 1. Potential regulation of MYB93 by SCR and MPK3:

A) Relative levels of MYB93 (AtMYB93) mRNA in 7-day old seedlings of wild type (Col-0), myb93-1 mutant (myb93),
scr-3 mutant (scr-3) and pSCR::GFP-SCR in scr-3 (SCR-GFP) assayed by qRT-PCR.  B) Control qRT-PCR experiment
showing relative levels of SCR mRNA in 7-day old seedlings of wild type (Col-0), scr-3 mutant (scr-3) and pSCR::GFP-
SCR in scr-3 (SCR-GFP; (Goh et al., 2016)). In both A) and B) 3 biological repeats are shown: error bars show the upper
and lower ranges of fold-change calculated by incorporating the standard deviation of ΔΔCt into the fold-change. Across
the 3 biological repeats combined, significant differences were seen with MYB93 expression between Col-0 and myb93
(p=0.009) and with SCR expression between Col-0 and pSCR::GFP-SCR (p=0.016).  The replicates in A) and B)
correspond to the same cDNA samples. C) MYB93 (AtMYB93) interacts with MPK3 (AtMPK3) in yeast. This interaction
is mediated by the N-terminal half of the protein (amino acids 1-345), which includes the R2R3 DNA binding domain
(pink boxes) but not the downstream region (blue) unique to the S24 clade (MYB93/MYB92/MYB53 (Gibbs et al.,
2014)). pGBKT7, empty pGBKT7 vector control. –LW, yeast grown on medium lacking leucine and threonine to test for
plasmid transformation; –LWAH, yeast grown on medium lacking adenine, tryptophan, leucine and threonine to
additionally test for protein-protein interaction. D)  Lateral root density (left graph) and primary root length (right graph)
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of wild type (Col-0) and mpk3-1 (Atmpk3) mutant 8-day old seedlings. 3 combined biological repeats are shown with data
points (small coloured points) for each repeat coloured differently. Larger coloured circles represent the means of the
biological repeats and black bars represent the overall mean and standard deviation of the means. A significant difference
in lateral root density between Col-0 and mpk3-1 was seen in a Mann-Whitney test (p = 3.611e-10). The number of
seedlings per replicate ranges from 38-54.

Description
The Arabidopsis MYB93 (At1g34670) transcription factor is a member of the plant R2R3-MYB transcription factor
family (Du et al., 2015) whose gene expression is largely restricted to root endodermal cells overlying developing lateral
root primordia and is transiently upregulated during the early stages of lateral root development (Gibbs et al., 2014;
Shukla et al., 2021; Voss et al., 2015). MYB93 is a negative regulator of lateral root development as myb93 mutants show
increased lateral root density whilst MYB93-overexpressing plants have fewer lateral roots (Gibbs et al., 2014). MYB93 is
part of a small clade of three related proteins, the S24 clade, alongside MYB92 (At5g10280) and MYB53 (At5g65230)
(Du et al., 2015; Gibbs et al., 2014).  MYB93, MYB93 and MYB53, alongside MYB41 (At4g28110), function
redundantly regulate suberin biosynthesis in the root endodermis (Shukla et al., 2021). However, the three S24 genes do
not appear to function completely redundantly during lateral root development as myb93, but not myb92, mutants show
elevated lateral root density (Gibbs et al., 2014). In addition, only MYB93 expression is induced by auxin (Gibbs et al.,
2014). Furthermore, via enhanced yeast one hybrid analysis, MYB93 (but not MYB92 or MYB53) is implicated in a root
signaling network downstream of the endodermal cell identity gene SCARECROW (SCR, At3g54220) (Iyer-Pascuzzi et
al., 2011; Sparks et al., 2016). Finally, publicly available protein interaction data (Oughtred et al., 2019; Popescu et al.,
2009; Wanamaker et al., 2017) suggests that MYB93 has a unique set of interaction partners compared to other S24 clade
members.  High-throughput protein microarray analysis (Popescu et al., 2009) shows that MYB93 interacts with
MITOGEN ACTIVATED PROTEIN KINASE 3, (MPK3, At3g45640) while other S24 proteins do not. In contrast, MPK6
(At2g43790) interacts with MYB93, MYB92 and MYB41 (Hoang et al., 2012; Popescu et al., 2009).

 

To further explore the upstream regulation of MYB93, we firstly analyzed the expression of MYB93 in the scr-3 mutant
using qRT-PCR. We showed that in three separate biological repeats with similar trends, MYB93 levels are upregulated in
scr-3 mutant seedlings and reduced in a ‘rescue' line (pSCR::GFP-SCR (Goh et al., 2016)) where SCR is re-introduced
into a scr-3 background under the control of its own promoter (Figure 1A, 1B). This demonstrates that SCR is a likely
negative regulator of MYB93 expression, extending previous protein-DNA interaction studies (Iyer-Pascuzzi et al., 2011;
Sparks et al., 2016). Given the highly restricted localization of MYB93 promoter activity (Gibbs et al., 2014), our data
suggest that SCR inhibits MYB93 promoter activity in most endodermal cells in the root. Interestingly, in a time course
transcriptome of root segments induced to form lateral root primordia, SCR gene expression is significantly
downregulated at 9-12h, immediately before the largest upregulation of MYB93 at 12-15h (Voss et al., 2015), suggesting
that localized SCR downregulation may be required for MYB93 induction.

 

To further investigate MPK3 as a potential protein regulator of MYB93, we tested the interaction of MYB93 with MPK3
in the yeast two-hybrid system. We showed that full-length MYB93 interacts with MPK3 (Figure 1C). Furthermore,
truncation of MYB93 showed that the N-terminus of the protein (amino acids 2-365, encompassing the R2R3-MYB
domain but not the downstream unique motif (Gibbs et al., 2014)) was necessary and sufficient to mediate interaction with
MPK3 (Figure 1C). The N-terminal region of MYB93 interacted with MPK3 in yeast but the C-terminal region of
MYB93 (amino acids 115-365 or 156-365) did not (Figure 1C). We next investigated the impact of loss of MPK3 on root
development and showed that the mpk3-1 mutant has elevated lateral root density compared to wild type, similarly to
Atmyb93 (Figure 1D; (Gibbs et al., 2014)) but no difference in primary root length (Figure 1D). This would position
MPK3 as a potential positive regulator of MYB93 during lateral root development, similar to the positive regulation of
MYB44 (At5g67300) by MPK3 and MPK6 (Nguyen et al., 2012). A previous study suggested that an mpk3 mutant does
not show a lateral root phenotype (Zhu et al., 2019), although this study was performed on slightly older seedlings (10
days vs 8 days), meaning that differences occurring during early lateral root development may have been overlooked in
the 10-day old seedlings. A conditional mpk3/mpk6 double mutant has fewer emerged lateral roots, suggesting that MPK3
and MPK6 could together promote lateral root emergence, via the auxin transporter LAX3 (Zhu et al., 2019). As MYB93
inhibits lateral root initiation as well as emergence (Gibbs et al., 2014), this suggests that MPK3, on its own or together
with MPK6, may play contrasting roles at different stages of lateral root development. Collectively, our data suggest that
MPK3 may work with MYB93 during lateral root development but not during primary root development.

 

In summary, we have extended previous data to show that MYB93 gene expression is negatively regulated by the
endodermal transcription factor SCARECROW. We have also demonstrated that the R2R3-MYB domain of MYB93
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interacts with the MAP kinase MPK3. Furthermore, we have implicated MPK3 in the negative regulation of lateral root
development, as a potential positive regulator of MYB93. Thus, we provide new insights into the mechanism by which
endodermal MYB93 regulates lateral root development in a very specific and localized manner.

Methods
RNA extraction and cDNA generation

Up to 100mg plant tissue from pooled 7-day old seedlings was ground in liquid nitrogen using RNAse-free ceramic
pestles and mortars. RNA was extracted using an ISOLATE II Plant RNA kit (Bioline, Meridian Biosciences, Memphis,
TN, USA). cDNA was generated from RNA using the SuperScriptTM III first-strand synthesis system (Invitrogen,
ThermoFisher Scientific, Waltham, MA, USA).

Quantitative RT-PCR (qRT-PCR).

qRT-PCR was carried out using Brilliant III ultra-fast SYBR Green low ROX qPCR master mix (600892, Aglient
Technologies, Stockport, UK) using a final template concentration of 1ng/µl based on the concentration of RNA added to
the cDNA synthesis reaction. The primers used were as follows.

Gene 5' primer 3' primer

MYB93 AAGCTCGCAGATTTGAATAGGTG ATCTGTACGACCTTGCAAATGC

SCR GCAGATAAGCTTGGCCTGCC GGAGCTAATCTTTGGAGTAACCAG

ACTIN2 TCGTACAACCGGTATTGTGCTG TAACAATTTCCCGCTCTGCTG

UBC21 CGATTCTTGACCAAGATATTCCATC TTAGAAGATTCCCTGAGTCGCAG

 

Primers were used at a final concentration of 200nM-400nM depending on primer efficiency. Reactions were carried out
on an AriaMx qPCR machine (Agilent Technologies, Stockport, UK) was used with cycling parameters of 95°C for 10
min, 40 amplification cycles of 95°C for 30 s and 60°C for 1 min. After this, a melt curve cycle (95°C 30 s) was
performed, then 65°C for 30 s and ramping back to 95°C for 30 s at a ramp rate of 0.3°C every 2 s to produce a
dissociation curve. Three technical repeats per plate were carried out for each sample and three biological replicates were
performed overall. Cq values were normalised to ACTIN2 (At3g18780) and UBC21 (At5g25760) housekeeping controls
and fold changes calculated using the ΔΔCt method (Livak & Schmittgen, 2001). Statistics were performed on ΔCt values
of combined replicates: ANOVA followed by a Dunnet's post-hoc test.

 

Yeast two-hybrid assays.

MYB93 (At1g34670) full-length and three truncated cDNAs (nucleotides 1-344, 345-1378, 468-1378) were cloned into
the pGADT7 vector; full-length MPK3 (A3g45640) cDNA was cloned into the pGBKT7 vector. The primers used had
appropriate restriction sites added for cloning and the primer pairs used were as follows.

Gene 5' primer 3' primer

MYB93 full-
length AAAGAATTCGGGAGGTCGCCTTGTTGC AAAGGATCCCTAAGATATAACGTTCATGAGG

MYB93-R2R3 AAAGAATTCGGGAGGTCGCCTTGTTGC AAAGGATCCTTTCTTCTTTAGATGTGTGTTCC

MYB93-C345 AAAGAATTCTTGATCCAG
ATGGGGATCG AAAGGATCCCTAAGATATAACGTTCATGAGG

MYB93-C468 AAAGAATTCTCCATGCAA
GGCGAAGCAG AAAGGATCCCTAAGATATAACGTTCATGAGG
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MPK3 AAAGAATTCAACACCGGCGGTGGCC AAAGGATCCCTAACCGTA
TGTTGGATTGAGTGC

 

2µg of each plasmid (constructs or empty vector controls) was transformed into S. cerevisiae strain AH109 Hansen
following a small-scale transformation protocol ((Clontech, 2009); Takara Biosciences, Otsu, Japan). Transformed yeast
was grown on drop out medium (SD) -LW (DSCK172, Formedium, Swaffham, UK) agar plates for 2-3 days at 30˚C until
transformants were observed. Individual transformed colonies were selected inoculated into 50µl of sterile distilled water,
5µl of which was then pipetted onto SD -AHLW (DSCK272 Formedium, Swaffham, UK) agar plates for 2-3 days at 30˚C
to test for protein-protein interaction.

 

Plant genotypes, growth conditions and lateral root assays.

Arabidopsis ecotype Col-0 wild type and the myb93-1 mutant (SALK_131752, NASC ID N631752; (Gibbs et al., 2014)),
mpk3-1 mutant (SALK_151594, NASC ID N869692; (Merkouropoulos et al., 2008)), scr-3 (Gallagher et al., 2004) and
pSCR::GFP-SCR in scr-3 (Goh et al., 2016) were grown in Levington M3 compost/vermiculite mix at 22˚C under 16h
light in a glasshouse. For qPCR, root assays and magenta pot growth, seeds were sterilised for 10 minutes in 10%
ParozoneTM Bleach (Jeyes, Hemel Hempstead, UK) followed by 3 rinses in sterile distilled water and resuspension in
200µl distilled water. Seeds were vernalized in the dark at 4˚C for 2 days. For root assays and qRT-PCR, seeds were plated
in rows at the top of half-strength Murashige and Skoog (MS) medium (M0404, Sigma-Aldrich, St Louis, Missouri, USA)
pH5.6-5.8 with 1% agar. Seedlings were grown vertically for 7 days (qRT-PCR) or 8 days (root assays) and 8-day root
plates were photographed. Emerged lateral roots and adventitious roots (roots emerging from the collet) were counted by
eye from plates and root length was measured from photographs using the freehand drawing tool in ImageJ
(https://imagej.net/ij/). Lateral root density was calculated for each seedling by dividing lateral root number by primary
root length. Root data was visualised using SuperPlots ((Lord et al., 2020);
https://huygens.science.uva.nl/SuperPlotsOfData/).

Statistical significance for lateral root density and primary root length between Col-0 and mpk3 was calculated using a
pairwise Mann-Whitney U-test.
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