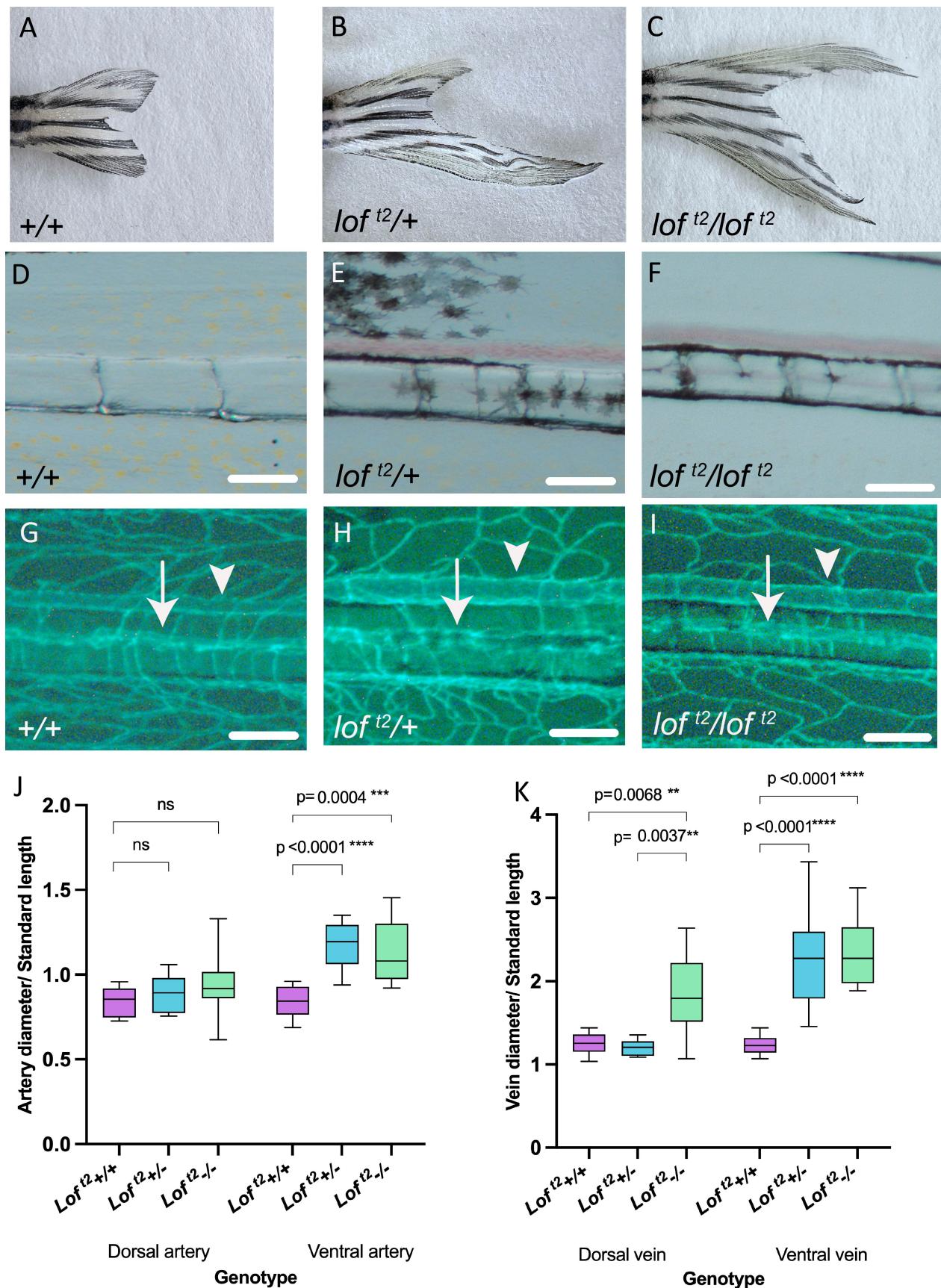


Increased diameter of arteries and veins in the caudal fins of *Danio rerio longfin*^{t2} fish is accompanied by fin overgrowth

Jennifer S. Lanni^{1§}, Benjamin W. Lyon¹, Stacy V. Nguyen¹


¹Biological, Chemical and Environmental Sciences, Wheaton College - Massachusetts, Norton, MA, US

[§]To whom correspondence should be addressed: lanni_jennifer@wheatoncollege.edu

Abstract

The classic dominant *longfin* zebrafish strain (*lof*^{t2}) has long fins due to ectopic expression of the potassium channel *Kcnh2a* in the fin mesenchyme. Potassium channel function is also known to affect the vasculature, but the fin vasculature has not been characterized in *lof*^{t2} fish. Here we show that *lof*^{t2} fish contain significantly increased artery and vein diameters in the caudal fin as compared to wildtype fish. Interestingly, these changes in blood vessel size are associated with areas of fin overgrowth, consistent with a possible role for the vasculature in fin size regulation.

27/7/2026 - Open Access

Figure 1. Artery and vein diameter in wildtype and *lof*^{t2} mutant zebrafish:

(A) $+/+$ caudal fin. (B) $lof^{t2/+}$ caudal fin with elongated ventral lobe. (C) $lof^{t2/-}/lof^{t2/-}$ caudal fin with elongated dorsal and ventral lobes. (D-F) Brightfield microscopy of ventral lobe of caudal fin. (D) $+/+$; (E) $lof^{t2/+}$; and (F) $lof^{t2/-}/lof^{t2/-}$. Scale bar = 300 μ m. (G-I) Corresponding green fluorescent vasculature in *Tg(fli1a:EGFP)^{y1}* ventral lobe of caudal fin.

(G) +/++; (H) *Lof*^{t2/+}; and (I) *Lof*^{t2/t2}. Arrow indicates intra-ray artery; arrowhead indicates primary vein flanking artery; scale bar = 300 um. (J) Genotype vs. artery diameter/standard length. (K) Genotype vs. vein diameter/standard length. For both J and K, an ANOVA was performed followed by multiple comparisons analysis using Tukey's test. Line indicates mean; box indicates middle 50% of data points; error bars represent minimum to maximum values in data set. N.s not significant; ** p < 0.01; *** p < 0.001; **** p < 0.0001. n = 10 per genotype.

Description

Zebrafish exhibit heritable variations in fin size that facilitate the study of growth regulation. These mutations primarily affect genes encoding proteins that mediate potassium transport, suggesting that ion regulation is critical in determining normal proportion (Silic & Zhang, 2023). In parallel, several mechanisms have been found to contribute to adult zebrafish caudal fin size and shape, including a calcineurin-mediated signaling pathway (Daane et al., 2018; Kujawski et al., 2014); the *Shh* pathway and *hox13* paralogs (Braunstein et al., 2021; Cumplido et al., 2024; Laforest et al., 1998; Surette et al., 2025); the *wnt10a* gene (Benard et al., 2024), and thyroid hormone (Harper et al., 2023). To date, only one of these mechanisms has been linked to potassium transport (Daane et al., 2018), leaving a gap in our understanding of how ion regulation can affect fin size.

Given the known effects of potassium on vascular tone (reviewed in (Dogan et al., 2019; Sahranavard et al., 2021), we wanted to assess whether the potassium channel mutations in long-finned zebrafish mutants affect the fin vasculature. Development of the vasculature has been closely studied in wildtype caudal and pectoral fins (Akiva et al., 2019; Bump et al., 2022; Leonard et al., 2023; Paulissen et al., 2022). Caudal fins are composed of 16-18 bony rays, each of which contains an artery and is flanked by two veins (Parichy et al., 2009; Tu & Johnson, 2011). The classic *longfin* zebrafish strain (*lof*^{t2}) has long fins due to ectopic expression of the potassium channel *Kcnh2a* in the fin mesenchyme (Daane et al., 2021; Stewart et al., 2021). We set out to characterize the caudal fin vasculature of adult *lof*^{t2} fish.

We crossed *lof*^{t2} mutant fish to transgenic fish expressing green fluorescent protein under the control of a pan-endothelial cell promoter (*Tg(fli1a:EGFP)*^{y1} (Lawson & Weinstein, 2002) and reared them to adulthood. As has been previously observed, fish homozygous for the *lof*^{t2} mutation have elongated fins, including the dorsal and ventral lobes of the caudal fin (Figure 1C). Fish heterozygous for the *lof*^{t2} allele display an elongated ventral caudal fin lobe but their dorsal caudal fin lobe maintains wildtype proportions (Figure 1B).

We imaged wildtype, *lof*^{t2/+}, and *lof*^{t2/t2} adult caudal fins using brightfield and fluorescence microscopy. Enlarged blood vessels were evident in the ventral caudal fins of both homozygous and heterozygous fish, typically at the third fin ray from the exterior (Figures 1E, 1F). Figures 1G-I show representative images of arteries (arrows) and veins (arrowheads). In *lof*^{t2/+} heterozygous fish, arteries and veins were significantly larger in diameter in the elongated ventral lobe, but no enlarged vessels were detected in the normally proportioned dorsal fin lobe (Figures 1J, 1K). In *lof*^{t2/t2} homozygous fish, the arteries in the ventral fin lobe had increased diameter when compared to wildtype fish, as did the veins in both the dorsal and ventral fin lobes (Figures 1J, 1K).

We have found that *lof*^{t2/+} and *lof*^{t2/t2} fish display increased diameter of their caudal fin blood vessels and hypothesize that this phenotype is caused by potassium-mediated changes in vascular tone. *Kcnh2a* is a voltage-gated potassium channel that allows potassium to flow out of the cell (Sanguinetti et al., 1995; Warmke & Ganetzky, 1994). Overexpression of *Kcnh2a* should increase potassium transport out of fin mesenchymal cells and thereby elevate potassium concentration in the extracellular fluid surrounding the blood vessels. Even slight increases in potassium have been shown to cause hyperpolarization of vascular smooth muscle cells, muscle relaxation, and vasodilation (Haddy et al., 2006; Hein et al., 2025; Sobey, 2001). Blood vessel diameter is also maintained by endothelial cell shape and size (Diwan et al., 2025; Sugden et al., 2017) and may be affected by potassium concentration, as increased potassium causes swelling and softening of endothelial cells (Oberleithner et al., 2009). Future investigations should examine both endothelial cell morphology and blood vessel flow rates in longfinned and wildtype zebrafish.

The vasculature may also be an important factor in regulation of zebrafish fin growth. Blood vessel diameter and fin size are associated in *lof*^{t2/+} heterozygous fish, in which only the overgrown ventral lobe has enlarged blood vessels. In wildtype zebrafish, endothelial cells are required during both larval development and fin regeneration for fins to reach their expected size (Bump et al., 2022; Bayliss et al., 2006). One limitation is that our experiments do not address potential causality between vessel size and fin overgrowth; this could be addressed in the future by treating fins with vasoactive drugs and assessing impact on fin size. It will also be of interest to determine whether changes in blood vessel diameter and flow are a common feature of other zebrafish fin size mutants. Interestingly, the longfinned zebrafish mutant *slc12a7a/kcc4a* has been shown to have larger vein diameter and decreased rate of blood flow in the caudal fin (Lanni et al., 2019). Taken as a whole, our findings suggest that potassium-induced changes in the vasculature of *lof*^{t2} zebrafish may contribute to fin overgrowth.

Methods

Zebrafish Husbandry and Maintenance

The following zebrafish lines were used: *lof^{t2}*, *Tg(fli1a:EGFP)^{y1}*, and wild-type AB. *lof^{t2}* was obtained by breeding the Tüpfel long fin strain (*lof^{t2}; leo^{t1}*) from Zebrafish International Resource Center onto an AB background and selecting for long fins. Crosses were performed such that each animal had only a single copy of the *Tg(fli1a:EGFP)^{y1}* transgene. Zebrafish were kept in a recirculating aquatic system and were maintained, bred and reared according to standard protocols (<https://zfin.org>). All procedures were conducted following established protocols and in full compliance with the Wheaton College Institutional Animal Care and Use Committee guidelines (Protocol #181-2025).

Fin imaging

Adult fish were anesthetized in 0.2% Tricaine in system water until immobile and standard length was recorded (mean standard length 29.5 mm; standard deviation 2.3 mm). Whole caudal fin photos were taken using an iPhone 14 Pro. Caudal fins were imaged using a Nikon SMZ800 dissecting microscope equipped for fluorescence detection and a Spot Insight 2 camera with Spot software.

Blood vessel measurement

Fin images were analyzed using Fiji (<http://fiji.sc>). Image brightness and contrast was adjusted if needed using Photoshop (Adobe). Blood vessel diameter was measured for the major artery running through the third-most exterior fin ray and from the paired vein directly below it (dorsal caudal fin lobe) or above it (ventral caudal fin lobe). Blood vessel diameter was measured in five positions in the region proximal to the first branch point of the third fin ray. If a visibly enlarged blood vessel was noted in ray 2 or 4, the vessels in that ray were chosen for measurement instead. Data were collected from ten fish of each genotype and used to calculate mean diameter for each blood vessel.

Statistical analysis

Statistical analysis and data visualization was performed using GraphPad Prism 10. One-way ANOVA was performed separately on artery and vein diameters followed by post-hoc Tukey's HSD test. A p-value of ≤ 0.05 was considered significant (*) in all analyses.

Reagents

STRAIN	GENOTYPE	AVAILABLE FROM
AB	<i>Danio rerio</i>	Zebrafish International Resource Center
y1Tg	<i>Tg(fli1a:EGFP)^{y1}</i>	Zebrafish International Resource Center
Tüpfel long fin (TL)	<i>lof^{dt2}; leo^{t1}</i>	Zebrafish International Resource Center

Acknowledgements: We would like to thank Amanda Bettle and Beth Amaral for fish care, Laura Ekstrom for discussion and manuscript review, and the Zebrafish International Resource Center for providing strains.

References

Akiva A, Nelkenbaum O, Schertel A, Yaniv K, Weiner S, Addadi L. 2019. Intercellular pathways from the vasculature to the forming bone in the zebrafish larval caudal fin: Possible role in bone formation. *Journal of Structural Biology* 206: 139-148. DOI: [10.1016/j.jsb.2019.02.011](https://doi.org/10.1016/j.jsb.2019.02.011)

Bayliss PE, Bellavance KL, Whitehead GG, Abrams JM, Aegeater S, Robbins HS, et al., Chan. 2006. Chemical modulation of receptor signaling inhibits regenerative angiogenesis in adult zebrafish. *Nature Chemical Biology* 2: 265-273. DOI: [10.1038/nchembio778](https://doi.org/10.1038/nchembio778)

Benard EL, Küçükaylak I, Hatzold J, Berendes KUW, Carney TJ, Beleggia F, Hammerschmidt M. 2023. *wnt10a* is required for zebrafish median fin fold maintenance and adult unpaired fin metamorphosis. *Developmental Dynamics* 253: 566-592. DOI: [10.1002/dvdy.672](https://doi.org/10.1002/dvdy.672)

Braunstein JA, Robbins AE, Stewart S, Stankunas K. 2021. Basal epidermis collective migration and local Sonic hedgehog signaling promote skeletal branching morphogenesis in zebrafish fins. *Developmental Biology* 477: 177-190. DOI: [10.1016/j.ydbio.2021.04.010](https://doi.org/10.1016/j.ydbio.2021.04.010)

2/7/2026 - Open Access

Bump RG, Goo CEA, Horton EC, Rasmussen JP. 2022. Osteoblasts pattern endothelium and somatosensory axons during zebrafish caudal fin organogenesis. *Development* 149: 10.1242/dev.200172. DOI: [10.1242/dev.200172](https://doi.org/10.1242/dev.200172)

Cumplido Ns, Arratia G, Desvignes T, Muñoz-Sánchez S, Postlethwait JH, Allende ML. 2024. *Hox* genes control homocercal caudal fin development and evolution. *Science Advances* 10: 10.1126/sciadv.adj5991. DOI: [10.1126/sciadv.adj5991](https://doi.org/10.1126/sciadv.adj5991)

Daane JM, Blum N, Lanni J, Boldt H, Iovine MK, Higdon CW, et al., Harris. 2021. Modulation of bioelectric cues in the evolution of flying fishes. *Current Biology* 31: 5052-5061.e8. DOI: [10.1016/j.cub.2021.08.054](https://doi.org/10.1016/j.cub.2021.08.054)

Daane JM, Lanni J, Rothenberg I, Seebohm G, Higdon CW, Johnson SL, Harris MP. 2018. Bioelectric-calcineurin signaling module regulates allometric growth and size of the zebrafish fin. *Scientific Reports* 8: 10.1038/s41598-018-28450-6. DOI: [10.1038/s41598-018-28450-6](https://doi.org/10.1038/s41598-018-28450-6)

Diwan Z, Kang J, Tsztoo E, Siekmann AF. 2024. Alk1/Endoglin signaling restricts vein cell size increases in response to hemodynamic cues. *Angiogenesis* 28: 10.1007/s10456-024-09955-3. DOI: [10.1007/s10456-024-09955-3](https://doi.org/10.1007/s10456-024-09955-3)

Dogan MF, Yildiz O, Arslan SO, Ulusoy KG. 2019. Potassium channels in vascular smooth muscle: a pathophysiological and pharmacological perspective. *Fundamental & Clinical Pharmacology* 33: 504-523. DOI: [10.1111/fcp.12461](https://doi.org/10.1111/fcp.12461)

Haddy FJ, Vanhoutte PM, Feletou M. 2006. Role of potassium in regulating blood flow and blood pressure. *American Journal of Physiology-Regulatory, Integrative and Comparative Physiology* 290: R546-R552. DOI: [10.1152/ajpregu.00491.2005](https://doi.org/10.1152/ajpregu.00491.2005)

Harper M, Hu Y, Donahue J, Acosta B, Dievenich Braes F, Nguyen S, et al., McMenamin. 2023. Thyroid hormone regulates proximodistal patterning in fin rays. *Proceedings of the National Academy of Sciences* 120: 10.1073/pnas.2219770120. DOI: [10.1073/pnas.2219770120](https://doi.org/10.1073/pnas.2219770120)

Hein TW, Razavi HM, Xu X, Somvanshi S, Muthuchamy M, Kuo L. 2025. Activation of Smooth Muscle Kir2.1 Channels and Na⁺/K⁺-ATPase Mediates Dilation of Porcine Coronary Arterioles at Physiological Levels of Potassium. *International Journal of Molecular Sciences* 26: 2654. DOI: [10.3390/ijms26062654](https://doi.org/10.3390/ijms26062654)

Kujawski S, Lin W, Kitte F, Börmel M, Fuchs S, Arulmozhivarman G, et al., Antos. 2014. Calcineurin Regulates Coordinated Outgrowth of Zebrafish Regenerating Fins. *Developmental Cell* 28: 573-587. DOI: [10.1016/j.devcel.2014.01.019](https://doi.org/10.1016/j.devcel.2014.01.019)

Laforest L, Brown CW, Poleo Gn, Géraudie J, Tada M, Ekker M, Akimenko MAe. 1998. Involvement of the *Sonic Hedgehog*, *patched 1* and *bmp2* genes in patterning of the zebrafish dermal fin rays. *Development* 125: 4175-4184. DOI: [10.1242/dev.125.21.4175](https://doi.org/10.1242/dev.125.21.4175)

Lanni JS, Peal D, Ekstrom L, Chen H, Stanclift C, Bowen ME, et al., Harris. 2019. Integrated K⁺ channel and K⁺Cl⁻ cotransporter functions are required for the coordination of size and proportion during development. *Developmental Biology* 456: 164-178. DOI: [10.1016/j.ydbio.2019.08.016](https://doi.org/10.1016/j.ydbio.2019.08.016)

Lawson ND, Weinstein BM. 2002. In Vivo Imaging of Embryonic Vascular Development Using Transgenic Zebrafish. *Developmental Biology* 248: 307-318. DOI: [10.1006/dbio.2002.0711](https://doi.org/10.1006/dbio.2002.0711)

Leonard EV, Hasan SS, Siekmann AF. 2023. Temporally and regionally distinct morphogenetic processes govern zebrafish caudal fin blood vessel network expansion. *Development* 150: 10.1242/dev.201030. DOI: [10.1242/dev.201030](https://doi.org/10.1242/dev.201030)

Oberleithner H, Callies C, Kusche-Vihrog K, Schillers H, Shahin V, Riethmüller C, MacGregor GA, de Wardener HE. 2009. Potassium softens vascular endothelium and increases nitric oxide release. *Proceedings of the National Academy of Sciences* 106: 2829-2834. DOI: [10.1073/pnas.0813069106](https://doi.org/10.1073/pnas.0813069106)

Parichy DM, Elizondo MR, Mills MG, Gordon TN, Engeszer RE. 2009. Normal table of postembryonic zebrafish development: Staging by externally visible anatomy of the living fish. *Developmental Dynamics* 238: 2975-3015. DOI: [10.1002/dvdy.22113](https://doi.org/10.1002/dvdy.22113)

Paulissen SM, Castranova DM, Krispin SM, Burns MC, Menéndez J, Torres-Vázquez Js, Weinstein BM. 2022. Anatomy and development of the pectoral fin vascular network in the zebrafish. *Development* 149: 10.1242/dev.199676. DOI: [10.1242/dev.199676](https://doi.org/10.1242/dev.199676)

Sahranavard T, Carbone F, Montecucco F, Xu S, Al-Rasadi K, Jamialahmadi T, Sahebkar A. 2020. The role of potassium in atherosclerosis. *European Journal of Clinical Investigation* 51: 10.1111/eci.13454. DOI: [10.1111/eci.13454](https://doi.org/10.1111/eci.13454)

Sanguinetti MC, Jiang C, Curran ME, Keating MT. 1995. A mechanistic link between an inherited and an acquired cardiac arrhythmia: HERG encodes the IKr potassium channel. *Cell* 81: 299-307. DOI: [10.1016/0092-8674\(95\)90340-2](https://doi.org/10.1016/0092-8674(95)90340-2)

Silic MR, Zhang G. 2023. Bioelectricity in Developmental Patterning and Size Control: Evidence and Genetically Encoded Tools in the Zebrafish Model. *Cells* 12: 1148. DOI: [10.3390/cells12081148](https://doi.org/10.3390/cells12081148)

2/7/2026 - Open Access

Sobey CG. 2001. Potassium Channel Function in Vascular Disease. *Arteriosclerosis, Thrombosis, and Vascular Biology* 21: 28-38. DOI: [10.1161/01.ATV.21.1.28](https://doi.org/10.1161/01.ATV.21.1.28)

Stewart S, Le Bleu HK, Yette GA, Henner AL, Robbins AE, Braunstein JA, Stankunas K. 2021. *longfin* causes *cis* - ectopic expression of the *kcnh2a ether-a-go-go* K⁺ channel to autonomously prolong fin outgrowth. *Development* 148: 10.1242/dev.199384. DOI: [10.1242/dev.199384](https://doi.org/10.1242/dev.199384)

Sugden WW, Meissner R, Aegeater-Wilmsen T, Tsaryk R, Leonard EV, Bussmann J, et al., Siekmann. 2017. Endoglin controls blood vessel diameter through endothelial cell shape changes in response to haemodynamic cues. *Nature Cell Biology* 19: 653-665. DOI: [10.1038/ncb3528](https://doi.org/10.1038/ncb3528)

Surette E, Donahue J, Soto Martinez C, Robinson S, McKenna D, Fitzgerald B, et al., McMenamin. 2025. Caudal fin shape imprinted during late zebrafish embryogenesis is re-patterned by the Sonic hedgehog pathway. *PLOS Biology* 23: e3003336. DOI: [10.1371/journal.pbio.3003336](https://doi.org/10.1371/journal.pbio.3003336)

Tu S, Johnson SL. 2011. Fate Restriction in the Growing and Regenerating Zebrafish Fin. *Developmental Cell* 20: 725-732. DOI: [10.1016/j.devcel.2011.04.013](https://doi.org/10.1016/j.devcel.2011.04.013)

Warmke JW, Ganetzky B. 1994. A family of potassium channel genes related to eag in *Drosophila* and mammals.. *Proceedings of the National Academy of Sciences* 91: 3438-3442. DOI: [10.1073/pnas.91.8.3438](https://doi.org/10.1073/pnas.91.8.3438)

Funding: This work was supported by funding from Wheaton College.

Conflicts of Interest: The authors declare that there are no conflicts of interest present.

Author Contributions: Jennifer S. Lanni: conceptualization, investigation, methodology, visualization, writing - original draft, writing - review editing. Benjamin W. Lyon: conceptualization, investigation, methodology. Stacy V. Nguyen: methodology.

Reviewed By: Anonymous

Nomenclature Validated By: Anonymous

History: Received December 29, 2025 **Revision Received** January 28, 2026 **Accepted** February 4, 2026 **Published Online** February 7, 2026 **Indexed** February 21, 2026

Copyright: © 2026 by the authors. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International (CC BY 4.0) License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Citation: Lanni JS, Lyon BW, Nguyen SV. 2026. Increased diameter of arteries and veins in the caudal fins of *Danio rerio* *longfin*^{t2} fish is accompanied by fin overgrowth. *microPublication Biology*. [10.17912/micropub.biology.002008](https://doi.org/10.17912/micropub.biology.002008)